
Narrow depression in the density of states at the Dirac point in disordered graphene

L. Schweitzer
Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig, Germany

�Received 22 July 2009; revised manuscript received 12 November 2009; published 21 December 2009�

The electronic properties of noninteracting particles moving on a two-dimensional bricklayer lattice are
investigated numerically. In particular, the influence of disorder in form of a spatially varying random magnetic
flux is studied. In addition, a strong perpendicular constant magnetic field B is considered. The density of states
��E� goes to zero for E→0 as in the ordered system but with a much steeper slope. This happens for both
cases: at the Dirac point for B=0 and at the center of the central Landau band for finite B. Close to the Dirac
point, the dependence of ��E� on the system size, on the disorder strength, and on the constant magnetic flux
density is analyzed and fitted to an analytical expression proposed previously in connection with the thermal
quantum-Hall effect. Additional short-range on-site disorder completely replenishes the indentation in the
density of states at the Dirac point.
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I. INTRODUCTION

Despite enormous efforts in recent years, the electronic
properties of graphene near the neutrality point that separates
conduction and valence bands are still under intense investi-
gations. Theories aimed at describing graphene via a Dirac-
type equation have elucidated many intriguing effects such
as the physics of massless relativistic particles and Klein
tunneling,1–5 which has been experimentally observed
recently.6,7 The Dirac-fermion approach, which represents an
approximation to the true lattice situation, is believed to be
valid especially close to energy zero, the so-called Dirac
points, where the conduction and valence bands touch each
other and the dispersion is linear. Furthermore, nearest-
neighbor tight-binding descriptions,8–10 which particularly
emphasize the hexagonal lattice structure of the carbon sheet,
have proven to be extremely helpful in understanding the
basic transport properties of this promising new material.

Based on the observation of a peculiar quantum-Hall
effect,11–13 it is generally accepted by now that some kind of
disorder must be present in the experimental setup. The dis-
order influences the charge transport through the graphene
sheet and affects the measurable quantities at least
quantitatively.14 Yet, which type of disorder is encountered in
real samples is still completely unclear or only partly known
in some special cases. This lack of knowledge is particularly
unfortunate as the definite type of disorder entirely deter-
mines the physical properties,15–21 e.g., leading to complete
Anderson localization in the case of short-range electrostatic
scattering potentials via chiral symmetry breaking and scat-
tering between valleys.22,23 For disordered systems, even the
single-particle density of states �DOS� near the Dirac point
remains still under debate. Depending on the disorder type
and approach, a vanishing, a finite, or an infinite DOS at the
Dirac point has been suggested for graphene or related
models.24–34

Also, the interpretation of experimental results is ham-
pered by the uncertainty regarding the precise form of the
DOS. Recently, following earlier experimental investigations
of the Landau-level splitting in high magnetic fields,35,36 the
opening of a spin �Zeeman� gap in the density of states at the

Dirac point has been suggested in the interpretation of mag-
netotransport measurements on graphene sheets.37 Only if a
gap, separating electron and hole states at the Dirac point,
was assumed, the experimental data could be accounted for.
Another unexplained experimental observation to be found
near the Dirac point in the presence of a strong magnetic
field is the divergent resistance,38,39 which has been attract-
ing considerable attention lately.

Theoretically, the opening of a mobility gap within the
central Landau band has been recently discovered by means
of detailed two-terminal conductance calculations.18 It was
found that with increasing disorder, the critical energies
where the plateau transitions of the Hall conductivity take
place, move apart. This splitting of the central conductance
peak unveiled the existence of an extra chiral quantum-phase
transition occurring at zero energy with critical properties
that differ from those of the quantum-Hall transitions.18

In the present work, the single-particle density of states is
calculated numerically for the same bricklayer lattice model.
The presumed ripple disorder is modeled by a spatially vary-
ing random magnetic flux with zero mean, pointing perpen-
dicular to the two-dimensional lattice. Also, an additional
constant magnetic field is applied that leads to the formation
of Landau bands. It is shown that in the disordered case, the
density of states goes to zero at the Dirac point not only in
the absence of a perpendicular magnetic field. Rather, a nar-
row suppression in the DOS is obtained also in the presence
of a finite magnetic field within the lowest �central� Landau
band. This unexpected feature depends essentially on the dis-
order strength, on the system size, and on the strength of the
perpendicular constant magnetic field. Due to the neglect of
electron spin in the model Hamiltonian, this outcome cannot
be attributed to a Zeeman splitting but must originate from
chirality and a disorder-induced interaction between the two
sublattices. This consideration is confirmed by the observa-
tion that the addition of short-range potential disorder com-
pletely destroys the DOS depression near the Dirac point.

II. BRICKLAYER MODEL

In the present study, the two-dimensional honeycomb lat-
tice responsible for the peculiar electronic properties of
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graphene is replaced by a bricklayer model8,9,18 which shares
the same topology as the hexagonal lattice. The bricklayer
lattice is bipartite and consists of two sublattices that can be
constructed by rectangular unit cells of size 2a�a placed
along the x direction. The unit cell contains two sites con-
nected by a bond of length a. Each site on one sublattice is
attached to three neighbors belonging to the other sublattice
by two bonds in the �x direction and one alternating bond in
the �y direction.

A tight-binding Hamiltonian for noninteracting particles
with nearest-neighbor transfer energy V in the presence of
perpendicular magnetic fields is defined by

H/V = �
x,y

��ei�x,y+a;x,y cx,y
† cx,y+a + e−i�x,y−a;x,y cx,y

† cx,y−a�

+ �
x,y

�cx,y
† cx+a,y + cx,y

† cx−a,y� , �1�

where cx,y
† and cx,y are creation and annihilation operators of

a particle at site �x ,y�, respectively. The prime at the first
sum in Eq. �1� indicates that only transfers along the nonzero
vertical bonds are included. The second sum describes the
movement in the horizontal chains. The phases, which are
chosen to be only associated with the vertical bonds in the y
direction

�x,y;x,y+a = �x+2a,y;x+2a,y+a −
2�e

h
�x,y �2�

are defined by the total magnetic flux �x,y = p /q�h /e�+	x,y
threading a given plaquette with upper left corner at site
�x ,y�. The constant magnetic field is given by the fraction
p /q of a flux quantum h /e with mutually prime integers p
and q so that the tight-binding band splits exactly into 2q
subbands, and 	x,y is the random flux part. The latter incor-
porates the effect of inhomogeneous magnetic fields and
mimics the disorder due to corrugations and ripples40–42

present in real graphene sheets. In contrast to diagonal dis-
order, it preserves the chiral symmetry and ensures a finite
conductivity at the Dirac point.

The random fluxes are drawn from a box distribution
−f /2
	x,y 
 f /2 with zero mean and disorder strength 0

 f / �h /e�
1. Periodic-boundary conditions are applied in
both directions to avoid edge and corner effects and the sys-
tem size was chosen to be commensurate with the spatially
constant magnetic field. The eigenvalues Ei�n� of the Hamil-
tonian �1� were obtained by direct diagonalization of the Nr
disorder realizations and used for the calculation of the en-
semble averaged density of states ��E� within an energy in-
terval �E

��E��E =
1

Nr
�
n=1

Nr 1

LxLy
�

E

E+�E

�
i

��E� − Ei�n��dE�. �3�

III. DENSITY OF STATES

A. Magnetic field B=0

Starting with the case where the constant part of the
magnetic-flux density is zero and only the random-disorder

part is present, the ensemble averaged density of states for
bricklayer systems of size Lx�Ly =64�128a2 is shown in
Fig. 1 for different disorder strengths f . With increasing f ,
the sharp van Hove singularities at E /V= �1.0 get rounded
and finally disappear. In the same way, the fluctuations,
which can be seen for the smallest disorder f / �h /e�=0.05,
vanish. The latter are due to finite size effects. Based on an
energy resolution of 0.02V as used in Fig. 1, the other curves
do neither depend on the shape of the system nor on the size
which has been checked within the range 32
L /a
192.
The main consequence of the increasing disorder is seem-
ingly the filling of the valley in the density of states with a
strong increase at the Dirac point E /V=0. However, a closer
inspection of the energy range near the Dirac point reveals a
completely different behavior. As shown in Fig. 2, indepen-
dent of disorder strength, the DOS always goes down to zero
at E /V=0. For small random-flux disorder, the DOS van-
ishes with a slope that finally becomes 2 / �9�V2a2� in the
clean limit. With increasing disorder strength f , this slope
becomes steeper and steeper. Since f / �h /e�=1.0 is the stron-
gest random-flux disorder possible, there will always be an
energy region around the Dirac point where the density of
states goes to zero at E /V=0.

These results have been obtained with different diagonal-
ization methods including a Lanczos algorithm as well as
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FIG. 1. �Color online� The ensemble averaged density of states
of a two-dimensional bricklayer lattice with random-flux-disorder
strength f / �h /e�=0.05, 0.2, 0.5, and 1.0. With increasing f , the van
Hove singularities disappear. The size of the bricklayer system is
Lx�Ly =64�128a2.
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FIG. 2. �Color online� The energy dependence of the density of
states near the Dirac point with random-flux disorder strength
f / �h /e�=0.2, 0.3, 0.4, 0.5, 0.6, 0.75, and 1.0. The steepest DOS
tails belong to f / �h /e�=1.0. The system size is Lx /a=Ly /a=96.
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standard LAPACK routines. The number of realizations ex-
ceeded 104 for each disorder f and the DOS bin width �E /V
was 4�10−6.

A disorder dependent vanishing of the density of states
was previously reported for massless random Dirac fermions
on a two-dimensional square lattice43 and on a honeycomb
lattice,24 where nondiagonal disorder was introduced by real
random-hopping terms. These model systems preserve time-
reversal symmetry and therefore belong to the �chiral� or-
thogonal universality class. Also, the energy range where the
DOS drops to zero is considerably broader compared with
what has been found in our random-flux bricklayer model,
which belongs to the chiral unitary symmetry class. Further-
more, the singular peak observed at E=0 in Ref. 34 for both
the disordered random fermions with either random-hopping
or random-gauge fields is absent in the present bricklayer
situation.

As seen from the thin black lines used to fit the curves in
Fig. 2, neither a simple linear-energy dependence, as ob-
served in the clean system, nor a power-law form used in
Refs. 24, 34, and 43 is adequate. An additional logarithmic
term similar as in the case of the class D thermal quantum-
Hall effect44,45 or for Dirac fermions on a honeycomb lattice
with weak diagonal and bond disorder24 seems to be an ap-
propriate empirical function. Although bond and random-flux
disorder are different, both disorder types maintain the chiral
symmetry of the system. Therefore, we try to use the ansatz

��E, f ,L� =
�E/V�

2�Va2�1 +
2

�
gs�f ,L�ln

1

�E/V�	 �4�

with a disorder and size-dependent fitting function gs�f ,L�.
The latter grows with both increasing disorder strength and
system size L. For square samples of fixed size L= �96a�2 as
used in Fig. 2, a power-law dependence on the disorder
strength gs�f ,L /a=96� f2.5 is found in the range 0.1

 f / �h /e��1.0 as is shown in Fig. 3. The same behavior is
obtained for larger sizes L /a=128 and 192. The latter data
are also included in Fig. 3.

The overall shape of the density of states, as plotted in
Fig. 1, seems to be independent of the system size with the
exception of noticeable small finite-size fluctuations occur-
ring only for the smallest disorder. In striking contrast, the
depression of the DOS near E /V=0 shows a strong length
dependence. In Fig. 4 the averaged density of states for dis-
order f =h /e is plotted for sample sizes L /a=64, 96, 128,
and 192. Applying the function in Eq. �4�, the size depen-
dence of gs close to E /V=0 can be obtained. This is shown
in Fig. 5 where the size dependence of the fitting parameter
gs�f ,L� with 64
L /a
512 is shown on a double-log plot
for two disorder strengths f =1.0 and f =0.5, respectively. In
both cases, a power-law relation gs�f ,L�L� is obtained with
an exponent �=2.0 for f =1.0h /e and �=2.15 if f =0.5h /e.
Because of the uncertainties due to the limited number of
realizations, particularly for larger system sizes, and the re-
stricted range 64
L /a
512, it is not possible to rule out
that both exponents are the same in the limit L→�. The
energy range where the function, Eq. �4�, can be fitted to the
numerical curves decreases with increasing size L in a simi-
lar manner as with increasing disorder strength f , which can
be seen in Fig. 2.

With the disorder and size dependence as identified above
from the numerical data, our ansatz for the density of states,
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FIG. 3. �Color online� The disorder dependence of the fitting
parameter gs�f ,L� with L /a=96 for f / �h /e�=0.1 and the seven dis-
order values f shown in Fig. 2. On this double-log plot the straight
line is given by gs�f�=1580f2.5. In addition, data for L /a=192 ���
are shown with a power-law fit gs�f�=8702f2.5.
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FIG. 4. �Color online� The energy dependence of the density of
states for disorder f =h /e and system size L /a=64, 96, 128, and
192. With increasing size, the energy range of the DOS depression
becomes narrower.
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FIG. 5. �Color online� The size dependence of the fitting param-
eter gs�f ,L� for square samples and two disorder values f =1.0h /e
�+� and f =0.5h /e ���. On a double-log scale, the straight lines are
given by gs�f / �h /e�=1.0,L�=0.123�L /a�2 and gs�f / �h /e�=0.5,L�
=0.0176�L /a�2.15, respectively.
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Eq. �4�, used for all curves shown in Fig. 2, is the fitting
function gs�f ,L�=gc�f / �h /e��5/2�L /a�2 with only one adjust-
able constant gc=0.0925.

B. Finite magnetic field

For a continuum Dirac model in the presence of a finite
magnetic field, the energy spectrum of the charge carriers is
arranged into degenerate Landau levels. The energetically
lowest Landau level appears at the charge neutrality point at
E=0.46 Hence, instead of the density of states going to zero,
a finite DOS arises at the Dirac point in the disorder-free
system for B�0. To account for an external perpendicular B
field in our lattice model, a spatially constant magnetic flux
is applied in addition to the random-magnetic-flux disorder.
This type of disorder causes the central Landau level at the
Dirac point to broaden only a little18,21 compared with the
broadening of the higher Landau bands. However, one has to
keep in mind that due to the lattice structure, the subbands
exhibit Harper’s broadening already in the disorder-free sys-
tem. This intrinsic broadening is small and disappears with
decreasing magnetic field. The disorder broadening of the
narrow central Landau band, which is proportional to f
p /q,
is seen in Fig. 6 for p /q=1 /32 and Lx=Ly =128a. There is
also an additional narrow structure discernible around E=0
and this was previously attributed to originate from the chiral
critical eigenstates.18

In order to scrutinize this special feature, more than 104

disorder realizations were calculated. Thereby, a bin width of
about 5�10−7 becomes possible leading to an enhanced en-
ergy resolution. As a result of this effort, one can see that the
density of states in the center of the lowest Landau band is
by no means constant but is in fact dominated by a narrow
depression �see Fig. 7�, which depends on disorder strength,
on the constant part of the magnetic flux density, and on the
system size. This is an unexpected outcome and was not
identified in previous work. It would be very interesting to
see whether or not a similar depression with a density of
states going to zero at the Dirac point develops also in a
continuum Dirac equation approach. The latter method is
generally employed in graphene studies and believed to be
particularly suited near the Dirac point.

The density of states within a narrow energy range near
E /V=0 is shown in Fig. 7 for square samples of size L /a
=128, magnetic-flux density B=1 /32�h /e�a−2 and several
disorder strengths f . Contrary to the zero magnetic field case,
the tails flatten with increasing disorder for finite B, and the
energy range of the DOS depression gets broader. Please
note that the DOS is plotted on a logarithmic scale for sake
of clarity. A similar function as Eq. �4� can be used to fit the
energy dependence of the narrow DOS depression but now
with a fitting parameter gb�f ,L ,B� which also depends on the
constant magnetic-flux density. A power-law relation
gb�f ,L ,B� f−2 is obtained from the data shown in Fig. 7.
This behavior is plotted in Fig. 8 for disorder values in the
range 0.01
 f / �h /e�
0.1. The same dependence has been
found also for size L /a=192, magnetic flux p /q=1 /96 and
disorder strengths f / �h /e�=0.01, 0.02, and 0.05. Therefore,
the energy range of the DOS depression broadens with in-
creasing disorder strength and the tails become flat, which is
completely opposite to the B=0 case.

The specific magnetic field dependence of gb�f ,L ,B� is
not so easy to extract because both the height and the width
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FIG. 6. �Color online� The disorder broadening of the lowest
�central� Landau band for square samples of size Lx=Ly =128a and
constant magnetic-flux density p /q=1 /32�h /e�a−2. The disorder
strength is f / �h /e�=0.02, 0.03, 0.05, and 0.07, respectively.
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FIG. 7. �Color online� The depression of the density of states
within the central Landau band near energy E /V=0.0 for square
samples of size Lx=Ly =128a and constant magnetic-flux density
p /q=1 /32�h /e�a−2. To enhance the differences, the DOS is shown
on a logarithmic scale. The disorder strength for the various curves
is f / �h /e�=0.01, 0.02, 0.03, 0.05, 0.07, and 0.1, respectively. The
topmost curve belongs to f / �h /e�=0.01.

Disorder strength f/(h/e)

g b
(f

,L
,p

/q
)

0.10.01

107

106

105

104

FIG. 8. �Color online� The disorder dependence of the fitting
parameter gb�f ,L , p /q�. The size of the square samples is L /a
=128 and the constant magnetic-flux density B=1 /32�h /e�a−2.
From the log-log plot, a power-law relation gb�f ,L , p /q�=355
��f / �h /e��−2 is obtained.
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of the Landau band vary. In any case, the DOS tails become
steeper with increasing B. For square samples of size L /a
=256 and disorder strength f / �h /e�=0.03, a power-law rela-
tion gb�f ,L , p /q� �1 /q�1.25 is extracted from a fit to the re-
lation corresponding to Eq. �4� with q=32, 64, 128, and 256.
A similar behavior is observed for L /a=192, f / �h /e�=0.02,
and flux densities with q=48, 96, and 192. Both data fits can
be seen in Fig. 9 on a double logarithmic scale. This mag-
netic field dependence means that the energy range of the
DOS depression becomes broader and therefore more impor-
tant when the magnetic-flux density gets smaller, approach-
ing those applied in experiments. However, this power-law
relation will probably only hold as long as the magnetic
length lB=
� / �eB�=a
q / �2�p� remains smaller than the
system size L.

The size dependence of gb�f =0.01h /e ,L , p /q=1 /32� is
found to be L2.5 in the range 64
L /a
192. Although the
tails of the DOS depression get steeper with increasing sys-
tem size, ��E /V=0� stays zero at the Dirac point in the range
64
L
512 investigated. Putting everything together, in the
presence of a perpendicular magnetic field the dependence of
the empirical fitting function on disorder strength, system
size, and magnetic-flux density can be summarized by gb
 f−2�L / lB�5/2.

IV. DISCUSSION AND CONCLUSIONS

The density of states of noninteracting electrons moving
on a two-dimensional bricklayer lattice in the presence of
chiral symmetry preserving random-flux disorder and a per-
pendicular magnetic field exhibits a narrow depression near
the Dirac point at E /V=0. The corresponding numerical re-
sults reveal a dependence on the disorder strength, the mag-
netic flux density, and on the size of the system. The latter is
not simply a finite-size effect because the special size depen-
dence develops only near the Dirac point where ��E /V=0�
stays zero even though the steepness of the tails grows with
increasing L.

Since the DOS depression can be removed by an addi-
tional diagonal disorder giving rise to intervalley scattering,
the origin of this feature must derive from the sublattice
structure and the associated chiral symmetry of graphene’s

honeycomb lattice. The modeling of diagonal disorder re-
quired an extra term �x,y�x,ycx,y

† cx,y in the Hamiltonian �1�.
The set of uncorrelated random-disorder potentials ��x,y� was
chosen to be box distributed −W /2
�x,y 
W /2 with prob-
ability density 1 /W. The removal of the DOS depression as a
function of additional short-range disorder potentials can be
seen in Fig. 10 for systems of size L /a=128, random-flux
disorder f / �h /e�=0.05, and magnetic-flux density B
=1 /32�h /e�a−2. With increasing disorder strength W /V
=10−5, 10−4, 10−3, 2�10−3, and 10−2, the narrow DOS de-
pression in the lowest �central� Landau band completely dis-
appears.

The occurrence of the DOS depression in the absence of
short-range diagonal disorder for B=0 could be explained if
the elastic-scattering length diverged at the Dirac point.
Then, for increasing system size a decreasing energy range
around E /V=0 would exist where the elastic-scattering
length is larger than L. Within this energy interval, the trans-
port would be almost ballistic and, due to the absence of
scattering events, the DOS approaches the result of the or-
dered case and drops to zero at E /V=0. If this size depen-
dence of the DOS depression were accessible in experiments,
it would open the possibility for obtaining information about
the elastic-scattering length.

Due to the lack of an analytical theory for the density of
states of a disordered bricklayer model near the Dirac point,
a relation proposed in the context of the thermal quantum-
Hall effect44,45 and recently for disordered Dirac fermions on
a honeycomb lattice24 was ventured. While the empirical re-
lation, Eq. �4�, used to fit the numerical results seems to
work quite well, one has to keep in mind that only analytical
calculations for a lattice model in the presence of random-
magnetic flux will eventually help to understand the com-
plete situation. The usual way to start from the continuum
Dirac equation may turn out to be not appropriate for a com-
prehensive description, if the depression in the density of
states found in the present study would not show up in the
former description.

The implication of this observation and its impact on the
scaling behavior and the critical properties at the Dirac point
is evident but still needs to be investigated. Usually, a non-
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FIG. 9. �Color online� The power-law dependence of the fitting
parameter gb�f ,L , p /q� versus magnetic-flux quanta p /q for square
samples of size L /a=192 ��� with f / �h /e�=0.02 and for L /a
=256 with disorder strength f / �h /e�=0.03. The straight lines follow
a �p /q�1.25 relation.
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FIG. 10. �Color online� The disappearance of the depression in
the density of states near the Dirac point due to an additional diag-
onal disorder potential of strength W /V=10−5, 10−4, 10−3, 2
�10−3, and 10−2, respectively. The system size is L /a=128, the
random-flux disorder f / �h /e�=0.05, and the constant magnetic-flux
density B=1 /32�h /e�a−2.
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critical density of states with a smooth energy dependence is
assumed in the scaling analysis. In particular, the strong en-
ergy and size dependence reported above necessitate a reas-
sessment of the conventional procedure applied in Ref. 18.

Although the disorder and magnetic field-dependent de-
pression found in the density of states at the Dirac point and
the occurrence of the conductance peak splitting reported
previously18 are in agreement with several aspects observed
in experiments mentioned in the introduction, it is clear that
many-body effects and also single-particle interactions such
as Zeeman splitting or spin-orbit scattering, which were not

taken into account in the present investigations, may turn out
to be the dominant effects in understanding these experi-
ments. Nevertheless, the results of the calculations presented
above may be helpful in finding out which type of disorder
determines the electronic properties of real graphene
samples.
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